Birational geometry of Calabi-Yau pairs

Carolina Araujo (IMPA)

Birational Geometry Seminar August 11, 2023

Birational geometry of Calabi-Yau pairs

Joint with Alessio Corti and Alex Massarenti
(We always work over \mathbb{C})

Motivation: Automorphisms of Smooth Hypersurfaces

$X=X_{d} \subset \mathbb{P}^{n+1}$ smooth hypersurface of degree d

Theorem (Matsumura-Monsky 1964)
If $(n, d) \neq(1,3),(2,4)$, then

$$
\operatorname{Aut}\left(\mathbb{P}^{n+1}, X\right) \rightarrow \operatorname{Aut}(X)
$$

- $C=X_{3} \subset \mathbb{P}^{2}$ genus 1 curve $(\operatorname{Aut}(C) \cong C \rtimes \mathbb{Z} / d \mathbb{Z})$
- $S=X_{4} \subset \mathbb{P}^{3} \mathrm{~K} 3$ surface ($\operatorname{Aut}(S)$ discrete and possibly infinite)

In both cases, the image of $\operatorname{Aut}\left(\mathbb{P}^{n+1}, X\right) \rightarrow \operatorname{Aut}(X)$ is finite.
$C=X_{3} \subset \mathbb{P}^{2}$ genus 1 curve

Theorem

- Every automorphism of C is induced by a Cremona transformation of the ambient \mathbb{P}^{2}.

$$
1 \rightarrow \operatorname{Ine}\left(\mathbb{P}^{2}, C\right) \rightarrow \operatorname{Dec}\left(\mathbb{P}^{2}, C\right) \rightarrow \operatorname{Aut}(C) \rightarrow 1
$$

- (Pan 2007) Generators for decomposition group $\operatorname{Dec}\left(\mathbb{P}^{2}, C\right)$
- (Blanc 2008) Generators for inertia group Ine $\left(\mathbb{P}^{2}, C\right)$
$S=X_{4} \subset \mathbb{P}^{3} \mathrm{~K} 3$ surface
Question (Gizatullin)
Is every automorphism of S induced by a Cremona transformation of the ambient space \mathbb{P}^{3} ?

Examples (Oguiso 2012)

- Aut $(S) \cong \mathbb{Z}$, and no nontrivial automorphism of S is induced by a Cremona transformation of \mathbb{P}^{3}.
- $\operatorname{Aut}(S) \cong(\mathbb{Z} / 2 \mathbb{Z}) *(\mathbb{Z} / 2 \mathbb{Z}) *(\mathbb{Z} / 2 \mathbb{Z})$, and every automorphism of S is induced by a Cremona transformation of \mathbb{P}^{3}.

Example (Paiva-Quedo 2022)
$\operatorname{Aut}(S) \cong(\mathbb{Z} / 2 \mathbb{Z}) *(\mathbb{Z} / 2 \mathbb{Z})$, and no nontrivial automorphism of S is induced by a Cremona transformation of \mathbb{P}^{3}.
$S=X_{4} \subset \mathbb{P}^{3} \mathrm{~K} 3$ surface

Problem
To describe the decomposition group of $S \subset \mathbb{P}^{3}$

$$
\operatorname{Dec}\left(\mathbb{P}^{3}, S\right)=\left\{\varphi \in \operatorname{Bir}\left(\mathbb{P}^{3}\right) \mid \varphi_{*} S=S\right\}
$$

and its image in $\operatorname{Aut}(S)$
$\left(\mathbb{P}^{3}, S\right)$ is a Calabi-Yau pair

Calabi-Yau pairs

Definition (Calabi-Yau Pair (X, D))

- X terminal projective variety
- D is a hypersurface $\sim-K_{X}$
- (X, D) is log canonical

Example
$\left(\mathbb{P}^{n}, D\right)$ where $D \subset \mathbb{P}^{n}$ is a smooth hypersurface of degree $n+1$

Calabi-Yau pairs

Definition (Calabi-Yau pair $(X, D))$

- X terminal projective variety
- D is a hypersurface $\sim-K_{X}$
- (X, D) is log canonical

Remark
(X, D) Calabi-Yau pair $\rightsquigarrow \exists \omega_{D}$ (unique up to scaling)

$$
\operatorname{div}\left(\omega_{D}\right)=-D
$$

Calabi-Yau pairs

Definition (Calabi-Yau pair (X, D))

- X terminal projective variety
- D is a hypersurface $\sim-K_{X} \quad\left(D=-\operatorname{div}\left(\omega_{D}\right)\right)$
- (X, D) is log canonical

Definition (volume preserving map $\left.\left(X, D_{X}\right) \rightarrow\left(Y, D_{Y}\right)\right)$
$f: X \rightarrow Y$ birational map $\rightsquigarrow f_{*}: \Omega_{\mathbb{C}(X) / \mathbb{C}}^{n} \rightarrow \Omega_{\mathbb{C}(Y) / \mathbb{C}}^{n}$
If $f_{*} \omega_{D_{X}}=\omega_{D_{Y}}$ (up to scaling) then we say that

$$
f:\left(X, D_{X}\right) \rightarrow\left(Y, D_{Y}\right) \text { is volume preserving }
$$

Calabi-Yau pairs

Remark (Valuative interpretation)

$\forall E \subset W, \quad a\left(E, K_{X}+D_{X}\right)=a\left(E, K_{Y}+D_{Y}\right)$

Example

If $D \subset \mathbb{P}^{n}$ is a smooth hypersurface of degree $n+1$, and $f: X \rightarrow \mathbb{P}^{n}$ is a volume preserving blowup along a smooth center Z, then

$$
Z \subset D \quad \text { and } \quad \operatorname{codim}_{\mathbb{P}^{n}}(Z)=2
$$

Problem

Given a Calabi-Yau pair (X, D), to determine
$\operatorname{Bir}(X, D):=\{\varphi \in \operatorname{Bir}(X) \mid \varphi:(X, D) \rightarrow(X, D)$ is volume preserving $\}$

Example
$D=D_{4} \subset \mathbb{P}^{3}$ smooth K 3 surface

$$
\operatorname{Dec}\left(\mathbb{P}^{3}, D\right)=\left\{\varphi \in \operatorname{Bir}\left(\mathbb{P}^{3}\right) \mid \varphi_{*} D=D\right\}=\operatorname{Bir}\left(\mathbb{P}^{3}, D\right)
$$

REMARK

If (X, D) is a Calabi-Yau pair with canonical singularities, then

$$
\operatorname{Dec}(X, D)=\left\{\varphi \in \operatorname{Bir}(X) \mid \varphi_{*} D=D\right\}=\operatorname{Bir}(X, D)
$$

Example (CANONicITY is NECESSARY)

$$
(X, D)=\left(\mathbb{P}^{2}, \sum_{i=0}^{2} H_{i}\right) \quad\left(\omega_{D}=\frac{d x}{x} \wedge \frac{d y}{y}\right)
$$

Remark

If (X, D) is a Calabi-Yau pair with canonical singularities, then

$$
\operatorname{Dec}(X, D)=\left\{\varphi \in \operatorname{Bir}(X) \mid \varphi_{*} D=D\right\}=\operatorname{Bir}(X, D)
$$

Theorem (Blanc 2013)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}, \sum_{i=0}^{2} H_{i}\right)=\langle\underbrace{\left(\mathbb{C}^{*}\right)^{2}, \operatorname{SL}(2, \mathbb{Z})}_{\text {preserve the torus }\left(\mathbb{C}^{*}\right)^{2}},(x, y) \mapsto\left(y, \frac{1+y}{x}\right)\rangle
$$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right):(x, y) \mapsto\left(x^{a} y^{b}, x^{c} y^{d}\right)
$$

Problem

Given a Calabi-Yau pair (X, D), to determine $\operatorname{Bir}(X, D)$.

Theorem A

If (X, D) is terminal with $\operatorname{Pic}(X)=\mathbb{Z} \cdot H$ and $\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)$, then

$$
\operatorname{Bir}(X, D)=\operatorname{Aut}(X, D)
$$

Corollary
If $D \subset \mathbb{P}^{n}$ is a general hypersurface of degree $n+1(n \geq 3)$, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right)
$$

Theorem B

If $D \subset \mathbb{P}^{3}$ is a general quartic surface with one singular point, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z}
$$

\mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$

$$
x_{0}^{2} A_{2}\left(x_{1}, x_{2}, x_{3}\right)+x_{0} B_{3}\left(x_{1}, x_{2}, x_{3}\right)+C_{4}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

$$
\mathbb{G}=\left\{\left[(A G-B F) x_{0}-C F: A\left(F x_{0}+G\right) x_{1}: A\left(F x_{0}+G\right) x_{2}: A\left(F x_{0}+G\right) x_{3}\right]\right.
$$

$$
\left.F, G \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] \text { homogeneous with } \operatorname{deg}(G)=\operatorname{deg}(F)+1\right\}
$$

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with one singular point P

$$
x_{0}^{2} A_{2}\left(x_{1}, x_{2}, x_{3}\right)+x_{0} B_{3}\left(x_{1}, x_{2}, x_{3}\right)+C_{4}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

$\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \xrightarrow{r} \operatorname{Bir}(D) \cong \operatorname{Aut}(\tilde{D})=\langle\tau\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$
Example
$\varphi:\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mapsto\left(-A x_{0}-B: A x_{1}: A x_{2}: A x_{3}\right) \rightsquigarrow \quad \tau$

$$
1 \rightarrow \mathbb{G} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \xrightarrow{\curvearrowleft} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 1
$$

$D \subset \mathbb{P}^{3}$ general quartic hypersurface with 1 singular point P

$$
1 \rightarrow \mathbb{G} \rightarrow \operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \xrightarrow{\curvearrowleft} \mathbb{Z} / 2 \mathbb{Z} \rightarrow 1
$$

Key point: Given $\psi \in \operatorname{Bir}\left(\mathbb{P}^{3}, D\right)$ there is a commutative diagram:

\mathbb{G} is the group of birational self-maps of X over \mathbb{P}^{2} fixing \tilde{D} pointwise View X as a model of \mathbb{P}^{1} over $\mathbb{C}(x, y)$
\mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$

The Cremona Group

$$
\operatorname{Bir}\left(\mathbb{P}^{n}\right):=\left\{\varphi: \mathbb{P}^{n} \quad \simeq \rightarrow \mathbb{P}^{n} \text { birational self-map }\right\}
$$

Example (The standard quadratic transformation)

$$
\begin{array}{cccc}
\tau: & \mathbb{P}^{2} & -\simeq & \mathbb{P}^{2} \\
& (x: y: z) & \longmapsto & \left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right)=(y z: x z: x y)
\end{array}
$$

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

Theorem (Hilda Hudson 1927)
For $n \geq 3$, $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ cannot be generated by elements of bounded degree.

The Sarkisov program (Corti 1995, Hacon-McKernan 2013)

The Sarkisov program (Corti 1995, Hacon-McKernan 2013)

The $X_{i} \rightarrow Y_{i}$'s are Mori fiber spaces

- X_{i} has terminal singularities
- $\rho\left(X_{i} / Y_{i}\right)=1$
- $-K_{X_{i}}$ is relatively ample

The ψ_{i} 's are elementary links

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle $)$
$\left(\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}\right.$ and $\left.\left.\mathbb{F}_{1} \cong B\right|_{P} \mathbb{P}^{2}\right)$
The elementary links are

Elementary links in higher dimensions

Type 1

Elementary links in higher dimensions

Type 2

Higher dimensions

Volume Preserving Sarkisov Program

Theorem (Corti-Kaloghiros 2016)

A volume preserving birational map between Mori fibered Calabi-Yau pairs is a composition of volume preserving Sarkisov links .

Volume Preserving Sarkisov Program

Theorem (Corti-Kaloghiros 2016)

A volume preserving birational map between Mori fibered Calabi-Yau pairs is a composition of volume preserving Sarkisov links .

Theorem A
If $n \geq 3$ and D is a general hypersurface of degree $n+1$, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right) .
$$

(D is smooth and $\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)$)

Theorem A
If $n \geq 3$ and D is a general hypersurface of degree $n+1$, then

$$
\operatorname{Bir}\left(\mathbb{P}^{n}, D\right)=\operatorname{Aut}\left(\mathbb{P}^{n}, D\right)
$$

$\left(D\right.$ is smooth and $\left.\operatorname{Pic}(D)=\mathbb{Z} \cdot\left(H_{\mid D}\right)\right)$

X_{1} has worst than terminal singularities

Theorem B

If $D \subset \mathbb{P}^{3}$ is a general quartic hypersurface with 1 singular point P, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z},
$$

where \mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$.

Theorem B

If $D \subset \mathbb{P}^{3}$ is a general quartic hypersurface with 1 singular point P, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z},
$$

where \mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$.

Theorem B

If $D \subset \mathbb{P}^{3}$ is a general quartic hypersurface with 1 singular point P, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z},
$$

where \mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$.

Theorem B

If $D \subset \mathbb{P}^{3}$ is a general quartic hypersurface with 1 singular point P, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z},
$$

where \mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$.

Theorem B

If $D \subset \mathbb{P}^{3}$ is a general quartic hypersurface with 1 singular point P, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z},
$$

where \mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$.

Theorem B

If $D \subset \mathbb{P}^{3}$ is a general quartic hypersurface with 1 singular point P, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z},
$$

where \mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$.

If $D \subset \mathbb{P}^{3}$ is a general quartic hypersurface with 1 singular point P, then

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, D\right) \cong \mathbb{G} \rtimes \mathbb{Z} / 2 \mathbb{Z},
$$

where \mathbb{G} is a form of \mathbb{G}_{m} over $\mathbb{C}(x, y)$.

Definition (Pliability)
(X, D) Mori fibered Calabi-Yau pair
$\mathcal{P}(X, D):=\left\{\left(X^{\prime}, D^{\prime}\right)\right.$ Mf CY pair $\left.\mid \exists(X, D) \xrightarrow{\text { vol preserving }}\left(X^{\prime}, D^{\prime}\right)\right\} / \sim$

Example (Square equivalence)

Definition (Pliability)

(X, D) Mori fibered Calabi-Yau pair
$\mathcal{P}(X, D):=\left\{\left(X^{\prime}, D^{\prime}\right)\right.$ Mf CY pair $\left.\mid \exists(X, D) \xrightarrow{\text { vol preserving }}\left(X^{\prime}, D^{\prime}\right)\right\} / \sim$

Theorem C

If $D \subset \mathbb{P}^{3}$ general quartic hypersurface with one $A 2$ singularity P, then we determine the pliability of $\left(\mathbb{P}^{3}, D\right)$:

- $\left(\mathbb{P}^{3}, D\right)$
- $\left(B I_{P} \mathbb{P}^{3}, \tilde{D}\right) \rightarrow \mathbb{P}^{2}$
- $\left(\mathbb{P}\left(1^{3}, 2\right), D_{5}\right)$
- $\left(\mathbb{P}\left(1^{3}, 2\right), D_{5}^{\prime}\right)$
- 3-parameter family $\left(X_{4}, D_{3,4}\right)$, with $X_{4} \subset \mathbb{P}\left(1^{3}, 2^{2}\right)$
- 6 -parameter family $\left(X_{4}, D_{2,4}\right)$, with $X_{4} \subset \mathbb{P}\left(1^{4}, 2\right)$

Thank you!

